Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Software-Intensive Systems in the Automotive Domain:Challenges for Research and Education

2006-04-03
2006-01-1458
Software-intensive systems and functions drive innovations in cars today. OEMs and suppliers face multiple challenges to take advantage of possibilities in this area. The rapidly developing field of software-intensive systems and software-based features in the automotive domain asks for dedicated engineering approaches, models, and processes. This paper defines the characteristics of software engineering for automotive systems and discusses methodological, technological, and organizational implications. These are used to pinpoint promising research areas as well as educational ramifications.
Technical Paper

Steering System Development in Premium Car Segment

2006-04-03
2006-01-0935
A top-of-the-range car customer not only expects exceptional vehicle design and quality but also a driving experience, which is out of the ordinary. Very harmonious interaction between vehicle dynamics and the steering system is required to offer clients such a consistent driving experience through generations of vehicle models. In this paper the basic properties of a premium driving experience are explored. It is shown that outstanding handling limits are a prerequisite, although most customers never experience such driving situations. In fact, on-center behavior is most crucial in enabling clients to experience part of premium driving performance, and the steering system is the key factor in delivering appropriate feedback to the driver by means of steering torque. Development procedures are presented to achieve the goals described above.
Technical Paper

Student Concept Vehicle: Development and Usability of an Innovative Holographic User Interface Concept and a Novel Parking Assistance System Concept

2019-04-02
2019-01-0396
The Deep Orange program is a concept vehicle development program focused on providing hands-on experience in design, engineering, prototyping and production planning as part of students’ two-year MS graduate education. Throughout this project, the team was challenged to create innovative concepts during the ideation phase as part of building the running vehicle. This paper describes the usability studies performed on two of the vehicle concepts that require driver interaction. One concept is a human machine interface (HMI) that uses a holographic companion that can act as a concierge for all functions of the vehicle. After creating a prototype using existing technologies and developing a user interface controlled by hand gestures, a usability study was completed with older adults. The results suggest the input method was not intuitive. Participants demonstrated better performance with tasks using discrete hand motions in comparison to those that required continuous motions.
Technical Paper

Technology from Highly Automated Driving to Improve Active Pedestrian Protection Systems

2017-03-28
2017-01-1409
Highly Automated Driving (HAD) opens up new middle-term perspectives in mobility and is currently one of the main goals in the development of future vehicles. The focus is the implementation of automated driving functions for structured environments, such as on the motorway. To achieve this goal, vehicles are equipped with additional technology. This technology should not only be used for a limited number of use cases. It should also be used to improve Active Safety Systems during normal non-automated driving. In the first approach we investigate the usage of machine learning for an autonomous emergency braking system (AEB) for the active pedestrian protection safety. The idea is to use knowledge of accidents directly for the function design. Future vehicles could be able to record detailed information about an accident. If enough data from critical situations recorded by vehicles is available, it is conceivable to use it to learn the function design.
Journal Article

The Development of Exhaust Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations Part 1 - General Exhaust Configurations

2013-04-08
2013-01-0879
The thermal prediction of a vehicle under-body environment is of high importance in the design, optimization and management of vehicle power systems. Within the pre-development phase of a vehicle's production process, it is important to understand and determine regions of high thermally induced stress within critical under-body components. Therefore allowing engineers to modify the design or alter component material characteristics before the manufacture of hardware. As the exhaust system is one of the primary heat sources in a vehicle's under-body environment, it is vital to predict the thermal fluctuation of surface temperatures along corresponding exhaust components in order to achieve the correct thermal representation of the overall under-body heat transfer. This paper explores a new method for achieving higher accuracy exhaust surface temperature predictions.
Technical Paper

The Development of Exhaust Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations Part 2 - Exhaust Acoustic Silencer Configurations

2014-04-01
2014-01-0646
At the rear of the vehicle an end acoustic silencer is attached to the exhaust system. This is primarily to reduce noise emissions for the benefit of passengers and bystanders. Due to the location of the end acoustic silencer conventional thermal protection methods (heat shields) through experimental means can not only be difficult to incorporate but also can be an inefficient and costly experience. Hence simulation methods may improve the development process by introducing methods of optimization in early phase vehicle design. A previous publication (Part 1) described a methodology of improving the surface temperatures prediction of general exhaust configurations. It was found in this initial study that simulation results for silencer configurations exhibited significant discrepancies in comparison to experimental data.
Journal Article

The Development of Turbine Volute Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations: Part 3: Exhaust Radial Turbine Volute Systems

2014-04-01
2014-01-0648
Modern exhaust systems contain not only a piping network to transport hot gas from the engine to the atmosphere, but also functional components such as the catalytic converter and turbocharger. The turbocharger is common place in the automotive industry due to their capability to increase the specific power output of reciprocating engines. As the exhaust system is a main heat source for the under body of the vehicle and the turbocharger is located within the engine bay, it is imperative that accurate surface temperatures are achieved. A study by K. Haehndel [1] implemented a 1D fluid stream as a replacement to solving 3D fluid dynamics of the internal exhaust flow. To incorporate the 3D effects of internal fluid flow, augmented Nusselt correlations were used to produce heat transfer coefficients. It was found that the developed correlations for the exhaust system did not adequately represent the heat transfer of the turbocharger.
Technical Paper

The Future of Digital Broadcast –More Than Just Crystal Clear Sound

2006-04-03
2006-01-0478
Digital radio broadcast systems, like HD-Radio™ and Satellite Radio, provide crystal clear sound. However, since they are essentially bits and bytes, they could also be used for distributing traffic and weather information or any other supplementary information. Due to considerably enhanced compression techniques, digital broadcast systems could also carry surround sound, which significantly improves the sound perception. Integration of the digital tuners in an automotive environment are mainly through MOST ring topologies, which allow flexibly adding different tuner modules depending on customer preferences and standards used in different markets. This paper aims at providing a more detailed insight into the aforementioned trends and developments, with a specific focus on premium segment automobiles.
Technical Paper

The new generation of BMW child seat and occupant detection system SBE2

2000-06-12
2000-05-0274
A new generation of BMW child seat and occupant detection system SBE2 for a smart airbag system is described. The SBE2 system consists of two subsystems: OC (occupant classification) and FDS (field detection system). The OC system is a force-sensitive sensor array that measures a pressure profile. The FDS system detects child seat and occupant according to the change of electrical field generated by four capacitive plates. Combining the signals from both subsystems, the BMW SBE2 system can distinguish fully automatically between a child seat and a person.
Journal Article

Variational Autoencoders for Dimensionality Reduction of Automotive Vibroacoustic Models

2022-06-15
2022-01-0941
In order to predict reality as accurately as possible leads to the fact that numerical models in automotive vibroacoustic problems become increasingly high dimensional. This makes applications with a large number of model evaluations, e.g. optimization tasks or uncertainty quantification hard to solve, as they become computationally very expensive. Engineers are thus faced with the challenge of making decisions based on a limited number of model evaluations, which increases the need for data-efficient methods and reduced order models. In this contribution, variational autoencoders (VAEs) are used to reduce the dimensionality of the vibroacoustic model of a vehicle body and to find a low-dimensional latent representation of the system.
Journal Article

Virtual Assessment of Occupied Seat Vibration Transmissibility

2008-06-17
2008-01-1861
This paper presents an integrated simulation process which has been performed in order to assess the riding comfort performance of a vehicle seat system virtually. Present methods of seat comfort design rely on the extensive testing of numerous hardware prototypes. In order to overcome the limitations of this expensive and time-consuming process, and to fasten innovation, simulation-based design has to be used to predict the seat comfort performance very early in the seat design process, leading to a drastic reduction in the number of physical prototypes. The accurate prediction of the seat transfer function by numerical simulation requires a complete simulation chain, which takes into account the successive stages determining the final seat behaviour when submitted to vibrations. First the manufacturing stresses inside the cushion, resulting from the trimming process, are computed.
Technical Paper

Virtual Validation of Assembly Processes with Digital Human Models — Optimizing the Human-Computer Interaction

2008-06-17
2008-01-1901
Today digital 3D human models are widely used to support the development of future products and in planning and designing production systems. However, these virtual models are generally not sufficiently intuitive and configuring accurate and real body postures is very time consuming. Furthermore, additionally using a human model to virtually examine manual assembly operations of a vehicle is currently synonymous with increased user inputs. In most cases, the user is required to have in-depth expertise in the deployed simulation system. In view of the problems described, in terms of human-computer interaction, it is essential to research and identify the requirements for simulation with digital human models. To this end, experienced staff members gathered the requirements which were then evaluated and weighted by the potential user community. Weaknesses of the simulation software will also be detected, permitting optimisation recommendations to be identified.
Technical Paper

Wash off Resistant 1-Component Structural Adhesives

2006-04-03
2006-01-0975
The application of crash durable structural adhesives in modern cars design, to improve the driving durability, the overall vehicle stiffness, the crash resistance and to make real light weight constructions feasible is significantly gaining in importance. 1-component systems are already introduced in the market and used in automotive industries. Usually the use of these bonds in automotive industries is limited by a relatively low wash off resistance in the pre-treatment tanks of the paint shop. If no additional actions are taken, there is a severe risk of wash off of the adhesives up to the partial loss in functionality. Respectively contamination of the pre-treatment tanks and aftereffects damage the surface of the coated cars. To avoid wash off a thermal process (oven) to pre-gel the adhesive in the flanges of the Body-In-White (BIW)- bodies before entering the pre-treatment utility is necessary. This is a save but cost intensive solution.
X